The Open Protein Structure Annotation Network
PDB Keyword


    Table of contents
    1. 1. Protein Summary
    2. 2. Ligand Summary
    3. 3. References

    Title Crystal structure of Ribonuclease III (TM1102) from Thermotoga maritima at 2.0 A resolution. To be published
    Site JCSG
    PDB Id 1o0w Target Id 282968
    Molecular Characteristics
    Source Thermotoga maritima msb8
    Alias Ids TPS1261,TM1102, 282139 Molecular Weight 27528.99 Da.
    Residues 240 Isoelectric Point 5.20
    Sequence mneserkiveefqketginfkneellfralchssyaneqnqagrkdvesnekleflgdavlelfvceil ykkypeaevgdlarvksaaaseevlamvsrkmnlgkflflgkgeektggrdrdsiladafeallaaiyl dqgyekikelfeqefefyiekimkgemlfdyktalqeivqsehkvppeyilvrtekndgdrifvvevrv ngktiatgkgrtkkeaekeaariayekllkers
      BLAST   FFAS

    Structure Determination
    Method XRAY Chains 2
    Resolution (Å) 2.00 Rfree 0.23
    Matthews' coefficent 2.23 Rfactor 0.195
    Waters 383 Solvent Content 44.32

    Access denied for user 'root'@'localhost' (using password: YES) (click for details)

    Ligand Information


    Google Scholar output for 1o0w
    1. A three-dimensional view of the molecular machinery of RNA interference
    M Jinek, JA Doudna - Nature, 2008 - nature.com
    2. Assessment of homology_based predictions in CASP5
    A Tramontano, V Morea - Proteins: Structure, Function, and , 2003 - Wiley Online Library
    3. Statistical analysis and prediction of proteinprotein interfaces
    AJ Bordner, R Abagyan - Proteins: Structure, Function, and , 2005 - Wiley Online Library
    4. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III
    J Gan, JE Tropea, BP Austin, DS Waugh, X Ji - Cell, 2006 - Elsevier
    5. Noncatalytic assembly of ribonuclease III with double-stranded RNA
    J Blaszczyk, J Gan, JE Tropea, DS Waugh, X Ji - Structure, 2004 - Elsevier
    6. The continuing story of endoribonuclease III
    D Drider, C Condon - Journal of molecular microbiology and , 2004 - content.karger.com
    7. Using property based sequence motifs and 3D modeling to determine structure and functional regions of proteins
    I Ovidiu, O Numan, VS Mathura - Current medicinal , 2004 - ingentaconnect.com
    8. An iterative knowledge_based scoring function for proteinprotein recognition
    SY Huang, X Zou - Proteins: Structure, Function, and , 2008 - Wiley Online Library
    9. The mechanism of RNase III action: how dicer dices
    X Ji - RNA interference, 2008 - Springer
    10. CASP5 target classification
    LN Kinch, Y Qi, TJP Hubbard - : Structure, Function, and , 2003 - Wiley Online Library
    11. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III
    AV Pertzev, AW Nicholson - Nucleic acids research, 2006 - Oxford Univ Press
    12. Structure of the nuclease domain of ribonuclease III from M. tuberculosis at 2.1
    DL Akey, JM Berger - Protein science, 2005 - Wiley Online Library
    13. Homodimeric structure and double-stranded RNA cleavage activity of the C-terminal RNase III domain of human dicer
    D Takeshita, S Zenno, WC Lee, K Nagata - Journal of molecular , 2007 - Elsevier
    14. Faster data-collection strategies for structure determination using anomalous dispersion
    A Gonzalez - Acta Crystallographica Section D: Biological , 2003 - scripts.iucr.org
    15. Structural basis for non-catalytic and catalytic activities of ribonuclease III
    X Ji - Acta Crystallographica Section D: Biological , 2006 - scripts.iucr.org
    16. A structural pattern_based method for protein fold recognition
    WR Taylor, I Jonassen - PROTEINS: Structure, Function, and , 2004 - Wiley Online Library
    17. Shotgun crystallization strategy for structural genomics II: crystallization conditions that produce high resolution structures for T. maritima proteins
    R Page, AM Deacon, SA Lesley - Journal of structural and , 2005 - Springer
    18. Intermediate states of ribonuclease III in complex with double-stranded RNA
    J Gan, JE Tropea, BP Austin, DS Waugh, X Ji - Structure, 2005 - Elsevier
    19. A fold-recognition approach to loop modeling
    C Levefelt, D Lundh - Journal of molecular modeling, 2006 - Springer
    20. Comparing protein contact maps via Universal Similarity Metric: an improvement in the noise-tolerance
    S Rahmati, JI Glasgow - journal of computational biology and drug , 2009 - Inderscience
    21. Thermotoga maritima ribonuclease III. Characterization of thermostable biochemical behavior, and analysis of conserved base-pairs that function as reactivity epitopes
    L Nathania, AW Nicholson - Biochemistry, 2010 - ACS Publications
    22. Protein Structure Prediction Using an Augmented Homology Modeling Method: Key Importance of Iterative-Procedures for Obtaining Consistent Quality Models
    S McDonald, S Mylvaganam - Current , 2005 - ingentaconnect.com
    23. Ribonuclease III and the Role of Double-Stranded RNA Processing in Bacterial Systems
    AW Nicholson - Ribonucleases, 2011 - Springer
    24. Of sequence and structure: Strategies of protein thermostability in evolutionary perspective
    IN Berezovsky, EI Shakhnovich - Arxiv preprint q-bio/0408007, 2004 - arxiv.org
    25. Aminoglycoside induced nephrotoxicity: molecular modeling studies of calreticulin-gentamicin complex
    G Hariprasad, M Kumar, K Rani, P Kaur - Journal of Molecular , 2011 - Springer
    26. Structures of the Klebsiella oxytoca phage phi KO2 and Vibrio harveyi myovirus-like protelomerase far C-terminal domains
    DK Smith - 2011 - gradworks.umi.com
    27. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence
    G Masliah, P Barraud, FHT Allain - Cellular and Molecular Life Sciences, 2012 - Springer
    28. The Universal Similarity Metric, applied to contact maps comparison in a two-dimensional space
    S Rahmati - 2008 - catspaw.its.queensu.ca

    Protein Summary

    The gene TM1102 from Thermotoga maritima encodes ribonuclease III enzyme EC:  The enzyme has two domains belonging to distinct superfamilies.  The N-terminal domain encodes ribonuclease III domain PF00636, while the C-terminal domain contains the double-stranded RNA binding motif (DsRBD) PF00035. The ribonuclease III catalyzes the digestion of double-stranded RNA. It is involved in the processing of ribosomal RNA precursors and of some mRNAs [Ref].  The DsRBD domain is found in a variety of RNA-binding proteins with different structures and exhibiting a diversity of functions [Ref]. It is involved in localisation of at least five different mRNAs in the early Drosophila embryo and by interferon-induced protein kinase in humans, which is part of the cellular response to dsRNA.

    Ligand Summary





    1. (No Results)


      Discuss this publication
    2. (No Results)


      Discuss this publication
    Tag page

    Files (0)

    You must login to post a comment.
    All content on this site is licensed under a Creative Commons Attribution 3.0 License
    Powered by MindTouch